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Fano resonances and fluorescence enhancement of a dipole emitter near a plasmonic nanoshell

Tiago J. Arruda,1,* Romain Bachelard,2 John Weiner,1 Sebastian Slama,3 and Philippe W. Courteille1

1Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, São Paulo, Brazil
2Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil

3Physikalisches Institut, Eberhardt-Karls-Universität Tübingen, D-72076 Tübingen, Germany
(Received 5 June 2017; published 30 October 2017)

We analytically study the spontaneous emission of a single optical dipole emitter in the vicinity of a plasmonic
nanoshell, based on the Lorenz-Mie theory. We show that the fluorescence enhancement due to the coupling
between optical emitter and sphere can be tuned by the thickness ratio of the core-shell nanosphere and by the
distance between the quantum emitter and its surface. In particular, we demonstrate that both the enhancement
and quenching of the fluorescence intensity are associated with plasmonic Fano resonances induced by near- and
far-field interactions. These Fano resonances have asymmetry parameters whose signs depend on the orientation
of the dipole with respect to the spherical nanoshell. We also show that if the atomic dipole is oriented tangentially
to the nanoshell, the interaction exhibits saddle points in the near-field energy flow. This results in a Lorentzian
fluorescence enhancement response in the near field and a Fano line shape in the far field. The signatures of this
interaction may have interesting applications for sensing the presence and the orientation of optical emitters in
close proximity to plasmonic nanoshells.
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I. INTRODUCTION

The Fano resonance is one of the hallmarks of interference
between discrete and continuous states in open quantum
systems. It was originally conceived as an interference between
a transition to a bound state, coupled weakly to a continuum,
and a transition directly to the same continuum [1]. Being a
wave phenomenon, the Fano effect can also be understood
as weak coupling between two classical oscillators driven
by an external harmonic force [2,3]. In plasmonics, it arises
from the interference between a localized, narrow subradiant
(dark) mode and a spectrally broad superradiant (bright) mode
acting as a background [3]. Recently, with the advent of
nanoplasmonics and metamaterials, the Fano interference has
become an essential tool for tailoring and controlling light-
matter interaction at the nanoscale [4], such as the plasmonic
cloaking technique [5], comblike scattering response [6,7],
off-resonance field enhancement [8,9], optical vortices [10],
superscattering [11], and atom-plasmon coupling [12].

In plasmonic mesoscopic systems, the Fano effect can
appear due to the interaction of a localized plasmon resonance
with a broad Mie scattering resonance [3]. Within the Lorenz-
Mie scattering theory, the Fano effect can be observed in
(i) the interference between multipoles of different orders
(e.g., dipole-quadrupole interference) [4] or (ii) multipoles
of the same orders (e.g., dipole-dipole interference), which
is sometimes referred to as unconventional Fano resonance
[9]. The former is easily obtained for specific directions of
scattering and generally does not depend on the material
properties of the scatterer [13]; the latter, however, is less
general and can be achieved only for specific geometries, such
as layered [6,9] or high-permittivity particles [14–16], and it is
usually independent of the scattering direction. Interestingly
enough, the Fano effect in Lorenz-Mie scattering can be
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associated with the formation of optical vortices and saddle
points in the energy flow around the particles [13].

Here, we study the impact of a Fano resonance of a
plasmonic nanoshell on an optical dipole emitter in its
vicinity. The presence of a nanostructure is known to enhance
the spontaneous-emission rate of atoms [17–21], and many
approaches have been developed to maximize [22,23] or
minimize [24,25] the coupling between the emitter and surface
electromagnetic modes, using, e.g., engineered hyperbolic
metamaterials [26]. Furthermore, there have been various
experimental and theoretical studies that have pointed out the
appearance of the Fano effect due to the overlap of a plasmon
resonance with the Lorentzian response of quantum emitters
[12,27]. Here we address the impact of a plasmonic Fano
resonance, arising from Lorenz-Mie scattering, in the vicinity
of nanoshells.

With this aim, we explore the unconventional Fano effect
in the Lorenz-Mie scattering by considering a core-shell
nanoparticle with realistic optical parameters. In order to
calculate the spontaneous-emission rate of an optical emitter
near the sphere, we apply a technique that is well established
in classical electrodynamics, based on multipole expansion of
classical electromagnetic fields in terms of vector spherical
wave functions [18,28–30]. Using the full-wave Lorenz-Mie
theory [31], we show that the plasmonic Fano resonance of
a silver nanoshell can lead to a large enhancement in the
radiative spontaneous-emission rate of an atomic dipole. We
show that the maximum fluorescence enhancement occurs for a
certain distance between the optical emitter and the nanoshell,
and it is controlled by near-field interactions. This distance is
approximately the same irrespective of the dipole orientation,
and it depends on ohmic losses within the nanoshell. The
strong fluorescence enhancement response is achieved when
the dipole is oriented normal to the spherical nanoshell surface.
We also verify that the fluorescence enhancement of the
dipole orientated tangentially to the spherical nanoshell is
sensitive to optical vortices and saddle points in the near
field. As the distance to the spherical surface increases, the
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fluorescence enhancement as a function of wavelength changes
from a symmetric Lorentzian line shape in the near field to an
asymmetric Fano resonance when passing through a saddle
point in the energy flow.

This paper is organized as follows. In Sec. II, we present
the theory of an atomic dipole in the vicinity of an arbitrary
sphere in the framework of the Lorenz-Mie theory. The
analytical expressions related to this section are provided in
Appendices A–C. In Sec. III, we numerically calculate the
spontaneous-emission rates and the fluorescence enhancement
associated with an atomic dipole near a plasmonic silver
nanoshell. We discuss our main results and conclude in
Sec. IV.

II. DECAY RATES AND FLUORESCENCE
ENHANCEMENT IN THE VICINITY OF A SPHERE

In quantum electrodynamics, the first-order perturbation
theory is the standard approach to calculate the variation
on linewidth and energy-level shift of a single atom due
to the environment [32], which is generally referred to as
the Purcell effect [33,34]. In the weak-coupling regime, the
spontaneous emission of an atom follows Fermi’s golden rule,
in which the atom decays exponentially to its ground state. A
remarkable feature of this approximation is that the emission
rate of an atom in the vicinity of a body, normalized by the
spontaneous-emission rate in vacuum, �/�0, can be calculated
in the framework of classical electrodynamics [29,33]. Indeed,
by taking the total radiated power by a classical dipole at
frequency ω0 in the presence of a body, normalized by the
corresponding radiated power in vacuum, P/P0, one can
formally demonstrate that P/P0 = �/�0, where �/�0 is
calculated at the transition frequency ω0 [18,22].

Bearing this equivalence in mind [35], let us consider an
arbitrary coated sphere of inner radius a and outer radius b

embedded in a nondispersive and nonabsorbing medium with
permittivity ε0 and permeability μ0. The sphere has optical
properties (ε1,μ1) for the core (r � a) and (ε2,μ2) for the shell
(a � r � b), as depicted in Fig. 1. Both core and shell consist
of isotropic and linear materials, and may have absorption and
dispersion that satisfy the Kramers-Kronig relations [24,30].

As illustrated in Fig. 1, the sphere interacts with a
single electric dipole located at position r0 = |r0| > b (the
coordinate system has its origin at the center of the sphere) with
dipole moment d0 emitting at the fluorescence frequency ω0.
There are two processes depicted in Fig. 1: (i) the spontaneous
emission of a dipole emitter near a plasmonic nanoshell; (ii) the
excitation of the whole system by an incoming electromagnetic
wave from below. With respect to the nanosphere, there are two
basic orientations for the optical emitter: the dipole moment
is orthogonally (d⊥

0 ) or tangentially (d||
0) oriented in relation

to the spherical surface. The dipole electric field Ed0
dip(r,ω0)

impinges on the spherical shell producing the scattered field
Ed0

sca(r,ω0) for r > b. The radiative decay rate of an atomic
dipole at the position r0 can be readily calculated via the
normalized radiated power in the surrounding medium (ε0,μ0),
in the presence and absence of the sphere. The total radiated
power is calculated by integrating the radial component of the
Poynting vector at the far field (r → ∞): P = r2

∫
d�S · r̂ ∝

FIG. 1. An electric dipole emitter in the vicinity of an illuminated
coated sphere with inner radius a and outer radius b. There are two
basic orientations for the electric dipole moment at r0: orthogonal
(d⊥

0 ) and parallel (d||
0 ) to the spherical surface. The sphere has optical

properties (ε1,μ1) for the core (0 < r � a) and (ε2,μ2) for the shell
(a < r � b), where ε (μ) is the permittivity (permeability). The
surrounding medium is (ε0,μ0). The sphere and the dipole emitter
are exposed to an incoming electromagnetic wave with electric field
Ein = E0e

ıkzx̂ (k = ω
√

ε0μ0). The dipole response is represented by
the electric field Edip.

r2
∫

d�|Ed0
dip + Ed0

sca|2 (for details, see, e.g., Ref. [18]). Using
the Green’s tensor formalism and the notation of Ref. [29], in
both classical and quantum electrodynamics [18], the solution
for the total decay rate associated with an electric dipole
moment d0 can be expressed as

�d0 (ω0)

�0
= 1 + 3

2k3
0d

2
0

Im
[
d0 · ←→

G sca
E (r,r0,ω0) · d0

]
= 1 + 3

2k3
0d

2
0

Im
[
d0 · Ed0

sca(r,ω0)
]
, (1)

where the scattered electric field, expressed as the electric
Green’s tensor “dotted” into the electric dipole moment, con-
tains the information of the environment (boundary conditions)
in which the optical emitter is embedded and k0 = ω0

√
ε0μ0.

Equation (1) takes into account both the radiative (�rad
d0

)
and nonradiative (�nrad

d0
) decay rates, which are associated

with near-field and far-field interactions, respectively, with a
dispersive sphere material.

From a quantum perspective, one can identify from Eq. (1)
an expression for the projected [33] (in d0) electric local

density of states (LDOS): ρd0 (ω0) ∝ Im[d0 · ←→
G E(r,r0,ω0) ·

d0], where
←→
G E(r,r0,ω0) · d0 = Ed0

dip(r,ω0) + Ed0
sca(r,ω0) is the

total electric Green’s tensor projected in d0. The full electric
LDOS takes into account the three possible directions of the
dipole moment d0 and is defined as the trace of the total elec-

tric Green’s tensor: ρ(ω0) ∝ ImTr[
←→
G E(r,r0,ω0)]. Calling ρ0

the electric LDOS associated with the emitter in vacuum,
one has ρ(ω0)/ρ0 = �(ω0)/�0. It is worth mentioning that
in the classical picture, the operators must be replaced with
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the angle average of the corresponding vector functions and
the trace operation is simply the spatial mean [18,33].

This theory provides a fully classical computational method
to derive a quantum property of a system, i.e., �/�0 [35].
To study the fluorescence enhancement within this theory,
we consider that the absorption coefficient of light by the
optical emitter depends only on the excitation wavelength.
There are some analytical approaches that take into account
the Lorentzian fluorescence spectra of the atomic dipole
as a function of the detuning frequency [36,37], which
we are not considering here. Furthermore, to discuss the
fluorescence enhancement factor due the coupling between
dipole and nanoshell, one must assume that the atomic
transition does not saturate, such that the dipole is linear,
d0 ∝ Ein(ω) [38]. Notwithstanding these considerations, this
analytical theory is in good agreement with experimental
data for quantum emitters near dielectric and plasmonic
spherical particles [39,40]. For the sake of completeness,
the well-known analytical expressions of the electromagnetic
fields in the Lorenz-Mie theory, the spontaneous-emission
rate, and the intensity enhancement factor are determined in
Appendices A–C, respectively.

The fluorescence enhancement factor Fd0 is defined as
the ratio between the observed emission intensities in the
presence and in the absence of the sphere in the vicinity of
the optical emitter [38–40]. In the absence of the sphere, the
observed emission intensity is I0 = |d0 · Ein|2ζAQ0, where ζA

and Q0 are the absorption coefficient (which depends on the
emitter polarizability) and the quantum yield of the optical
emitter, respectively. This latter quantity Q0 is related to
the ratio between radiative and nonradiative decay rates. In
vacuum, one has Q0 = 1. When the sphere is considered in
the environment, both the quantum yield and the excitation
intensity are modified, so that the observed emission intensity
is IF = |d0 · (Ein + Esca)|2ζAQd0 . Here, we assume that the
absorption coefficient of light ζA by an optical dipole emitter
is intensity independent and remains the same as in vacuum
[39]. We also assume that the quantum yield Qd0 depends only
on the sphere. Being �d0 = �rad

d0
+ �nrad

d0
and Fd0 ≡ IF /I0, one

has

F
ω0
d0

(r0,ω) = Gd0 (r0,ω)Qω0
d0

(r0), (2)

where the quantities

Gd0 (r0,ω) = 〈|d0 · [Ein(r0,ω) + Esca(r0,ω)]|2〉
〈|d0 · Ein(r0,ω)|2〉 , (3)

Q
ω0
d0

(r0) = �rad
d0

(r0,ω0)

�rad
d0

(r0,ω0) + �nrad
d0

(r0,ω0)
(4)

are the averaged intensity enhancement factor (which depends
on ω, the excitation frequency) and the quantum efficiency
(which depends on ω0, the transition frequency), respectively,
with Esca(ω) being the scattered field. The operator 〈· · · 〉 =
(1/4π )

∫ 1
−1 d(cos θ )

∫ 2π

0 dϕ(· · · ) is the angle average over 4π

and is analytically calculated in Appendix C. The quantum
yield Q

ω0
d0

(r0) can be readily obtained from Eqs. (B2)–(B7)
of Appendix B. We emphasize that we are considering the
weak-coupling regime, so that Q

ω0
d0

(r0) is only modified by the
presence of the sphere and not by the excitation intensity [34].

The interaction between the atomic dipole and the incom-
ing (scattered) electric fields is encoded in the intensity
enhancement factor Gd0 (r0,ω). Of course, if there is no sphere
interacting with the dipole, then F

ω0
d0

(r0,ω) = 1, provided that
d0 is parallel to Ein.

The theory presented above is general and can be applied
to arbitrary spheres and dipoles (quantum dots, atoms, or
molecules) below the saturated intensity regime [38–40]. Now,
we consider a realistic system for a quantum emitter in the
vicinity of a plasmonic nanosphere. Here, we are interested in
a configuration where the presence of a dielectric core strongly
modifies the plasmonic scattering response [41–44] and may
induce plasmon hybridization [45] and, ultimately, Fano
resonances [46]. For subwavelength structures, the plasmon
hybridization corresponds to an interference between dipole
resonances excited, e.g., at the interface between the plasmonic
shell and the surrounding medium (broad mode) and between
the dielectric core and the plasmonic shell (narrow mode).
The constructive interference between these two surface
modes produces a “bonding” mode, whereas the destruc-
tive interference between them produces an “antibonding”
mode [46].

III. ATOMIC DIPOLE IN THE VICINITY
OF A SILVER NANOSHELL

Let us consider a nanoparticle consisting of a lossless
dielectric core with refractive index n1 = 3.5 and radius
a = 50 nm coated with a dispersive silver (Ag) nanoshell with
radius b = 70 nm. The Ag dielectric permittivity function is
calculated using experimental data and dispersion relations
from Refs. [47,48]. From the standard Lorenz-Mie theory, the
far-field extinction, scattering, and absorption cross sections
associated with a coated sphere are, respectively [31],

σext = 2π

k2

∞∑
�=1

(2� + 1)Re[a�(ω) + b�(ω)], (5)

σsca = 2π

k2

∞∑
�=1

(2� + 1)[|a�(ω)|2 + |b�(ω)|2], (6)

σabs = σext − σsca, (7)

where a�(ω) and b�(ω) carry the dependence on the geometri-
cal and material parameters of the scatterer (Appendix A) and
k = ω

√
ε0μ0 is the wave number in the surrounding medium.

In Fig. 2, we plot the Lorenz-Mie cross sections (in units of
πb2) in the optical frequency range, so that 0.44 < kb < 0.88.
Within this parameter range, the dipole approximation can
still be applied to understand the scattering resonances. In
particular, note that the presence of a dielectric core leads to
a strong absorption and scattering resonance peaks around
770 nm (compare it with the inset in Fig. 2). This resonance,
which is due to the core-shell geometry, can be explained
by the plasmon hybridization between plasmon modes in
the inner and outer Ag spherical surfaces [45]. Indeed,
we choose the geometrical parameters (b = 70 nm and
thickness ratio a/b = 5/7) to obtain a resonance peak within
the Ag nanoshell around λ0 = 780 nm. The interference
between the sphere and cavity plasmon modes gives rise to
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FIG. 2. Optical cross sections associated with a silver (Ag)
nanoshell illuminated by plane waves as a function of the excitation
wavelength. The lossless dielectric core has refractive index n1 = 3.5
and radius a = 50 nm, whereas the Ag shell has radius b = 70 nm and
dispersive permittivity provided by Ref. [47]. The resonant peak in the
cross sections around 770 nm is due to plasmon hybridization between
the core-shell (r = a) and shell-external medium (r = b) interface
plasmon modes, and has a Lorentzian line shape for the absorption
cross section σabs and a Fano line shape for the scattering cross section
σsca. The inset shows that these peaks vanish for a homogenous Ag
nanoparticle with radius b = 70 nm. The quadrupolar resonance peak
around 635 nm is also due to plasmon hybridization.

a Fano line-shape response in the scattering cross section
and a Lorentzian (Breit-Wigner) line-shape response in the
absorption cross section [9]. It is worth mentioning that one
could also achieve Fano resonances in the total scattering
cross section of a homogeneous high-permittivity dielectric
sphere [15,16], which is not the focus of our study.

The scattering profile showed in Fig. 2 can be mainly
explained using the Lorenz-Mie coefficient a1 (the electric
dipole amplitude): σsca ≈ 6π |a1|2/k2 [7,9]. The asymmetric
line shape is due to the constructive and destructive interfer-
ences between in- and out-of-phase electric fields associated
with the surface plasmon waves at the two metal-dielectric
surfaces. This leads to a resonance at λ = 770 nm and an
antiresonance at λ = 740 nm, respectively. In particular, the
antiresonance scattering response due to the presence of the
plasmonic nanoshell can be used as a technique to achieve near
invisibility of dielectric nanoparticles within a narrow band of
wavelengths [5,24].

Now, we consider an optical emitter with an emission
wavelength λ0 = 780 nm, e.g., a quantum dot, a molecule,
or a rubidium (Rb) atom, in the vicinity of the (dielectric)
core-shell (Ag) nanoparticle. The atomic dipole emits at a
fixed frequency ω0 (wavelength λ0) and it is not affected by
the intensity of the excitation electric field, but only by the
sphere, as depicted in Fig. 1.

Figures 3(a) and 3(b) show the spontaneous-decay rates,
calculated from the Lorenz-Mie theory, and the corresponding
quantum efficiency of the system. As can be seen in Fig. 3(a),
the tangential orientation of the atomic dipole moment is
associated with a slow radiative decay rate, whereas a high
radiative decay rate is obtained for the normal orientation of

FIG. 3. Spontaneous-decay rates for an optical emitter with
transition wavelength λ0 = 780 nm in the vicinity of a silver nanoshell
as a function of the distance to the spherical surface �r = r0 − b. The
nanoparticle consists of a dielectric core with n1 = 3.5 and radius
a = 50 nm and a silver shell with radius b = 70 nm. (a) The radiative
(�rad) and nonradiative (�nrad) decay rates for a dipole oriented
tangentially (||) or normally (⊥) to the spherical surface normalized
by the decay rate in vacuum (�0). The inset shows that �rad

⊥(||) → �0

and �nrad
⊥(||) → 0 as �r � b. (b) The corresponding quantum efficiency

Q = �rad/� for each orientation. The inset shows that Q⊥(||) → 1 as
�r � b.

the atomic dipole moment. Indeed, in the near field, the dipole
moment with tangential orientation induces a dipole moment
in the plasmonic nanoshell, but with opposite direction and
almost the same amplitude, resulting in near cancellation of
the effective electric field [37]. As a result, �rad

||  �rad
⊥ in the

vicinity of the nanoshell.
Figure 3(b) shows that when the atom lies on the nanoshell

surface (�r = 0 nm), the nonradiative decay channel is
dominant (Q⊥ ≈ 0 and Q|| ≈ 0). This is due to the near-field
interaction of the atomic dipole moment with both bright
(� = 1) and dark (� > 1) electromagnetic modes, with the
latter being the dominant interaction. In a more complete
and realistic picture, the atom sets up a polarization field
due to its intrinsic polarizability, leading to a very strong
interaction with the plasmonic surface via van der Waals
forces, dispersion forces, and Casimir-Polder forces [12].
Also, note that Q⊥ > Q|| for our set of parameters, which
means that a more efficient coupling between the dipole
and the nanoshell is found for a normally oriented dipole.
Both quantum efficiencies, Q⊥ and Q||, are below unity
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due to ohmic losses in the metallic shell. However, for large
distances r0 � b, the inset in Fig. 3(b) shows that both Q⊥ and
Q|| → 1.

In Figs. 4(a)–4(c), we plot the intensity enhancement factor
G and the corresponding fluorescence enhancement factor
F for some specific excitation wavelengths obtained from
Fig. 2 as a function of �r . The wavelengths are 780 nm
(transition wavelength of the optical emitter), 770 nm (dipolar
scattering-absorption resonance in the core-shell sphere),
740 nm (scattering antiresonance), and 635 nm (quadrupolar
scattering-absorption resonance). The rigorous calculation
usually considers that d0 is parallel to the local electric field,
which takes into account both the incoming and scattered
electric fields (for details, see Appendix C) [37]. In the
far-field region or in the absence of the sphere, d0 is parallel
to the incoming electric field, Ein(kz) = E0e

ıkzx̂. Indeed,
for quantum emitters, the dipole orientation can be easily
controlled by the polarization of the incoming electromagnetic
wave [12]. To simplify our discussion, we consider only the
two basic dipole moment orientations, so that one can assume
that the dipole emitter lies along the x axis (x > b) for d⊥

0 and
is perpendicular to the z axis (z > b) for d||

0 .
For all the excitation wavelengths in Figs. 4(b) and 4(c),

the maximum F⊥(||) occurs around �r ≈ 5 nm, despite
the strong intensity enhancement factor G⊥(||) for �r →
0; see Fig. 4(a). This optimum fluorescence enhancement
for �r �= 0 is a consequence of optical absorption in the
metallic nanoshell. Below �r ≈ 5 nm, nonradiative scattering
channels dominate over the radiative one (� = 1), so that
the atomic dipole strongly interacts with subradiant (dark)
modes, which possess angular momentum with � > 1. Indeed,
we have verified that the Lorenz-Mie series associated with
the quantum efficiencies converges only for � � 1 (�max ≈
76 for our set of parameters), despite the scattering cross
section being well described by the dipole approximation
(� = 1); see Fig. 2. This agrees with previous theoretical and
experimental results that show that the dipole approximation
fails to describe the quenching of fluorescence for short
distances [49].

As expected from Fig. 3(b), we have in Fig. 4 an efficient
coupling for the normally oriented dipole in comparison
with the tangentially oriented dipole, so that F⊥ is one order
of magnitude greater than F||. Due to the plasmonic Fano
resonance, the fluorescence enhancement F⊥ ≈ 48 occurs
even with a detuning of 10 nm from the atomic transition.
This result is encouraging from the experimental point of
view since small variations in the resonance frequency of
an ensemble of nanoshell structures are expected due to
fabrication and material imperfections.

In Figs. 5(a)–5(d), we plot the fluorescence enhancement
factor as a function of the excitation wavelength. Note that the
F|| profile changes continuously from a Lorentzian line shape
(�r = 5 nm) to a Fano line shape as we increase �r , whereas
F⊥ remains a Fano line-shape profile from the beginning to the
end. This change in F|| behavior seems to occur around �r =
20 nm and �r = 30 nm, which is a local minimum region for
the quantum efficiency Q|| [see Fig. 3(b)]. Furthermore, being
a Fano line shape described by fq(ε) = (q + ε)2/(1 + ε2),
where q is the Fano asymmetry parameter, the Fano profiles

FIG. 4. The intensity and fluorescence enhancement factors for
a quantum emitter with transition wavelength λ0 = 780 nm as a
function of the distance �r to a silver nanoshell and excitations
wavelengths. The core-shell nanoparticle consists of a dielectric core
(n1 = 3.5) with radius a = 50 nm and a silver shell with radius
b = 70 nm. The excitation wavelengths λ are chosen from Fig. 2,
with Ein(λ) being parallel to d⊥(||)

0 : 780 nm (emission wavelength),
770 nm (scattering resonance), 740 nm (cloaking or Fano dip in
the scattering response), 635 nm (quadrupole resonance). The plots
show the intensity enhancement factors (a) G|| and G⊥ (inset), and the
corresponding fluorescence enhancement factors (b) F|| and (c) F⊥.
The maximum fluorescence enhancement occurs for �r ≈ 5 nm.

obtained in Figs. 5(c) and 5(d) have asymmetry parameters
with different sign, namely q⊥ ≈ 2.2 and q|| ≈ −2.9. These
two plots are highlighted in the insets of Figs. 5(c) and 5(d).
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FIG. 5. Fluorescence enhancement response associated with a quantum emitter (transition wavelength λ0 = 780 nm) in the vicinity of a
silver nanoshell. The inner sphere has refractive index n1 = 3.5 and radius a = 50 nm, whereas the silver nanoshell has radius b = 70 nm.
The plots show the fluorescence enhancement factor as a function of the excitation wavelength and the distance between the emitter and the
spherical surface for a (a) tangentially and (b) normally oriented dipole, with d⊥(||)

0 being parallel to Ein. From left to right, the peaks correspond
to distances �r ranging from 0 nm (the thicker line) to 50 nm (the thinner line). (c) The plot shows the Lorentzian line shape of F|| for �r = 5
nm (maximum enhancement). The inset shows a Fano line shape for �r = 25 nm with negative asymmetry parameter q|| = −2.9. (d) The plot
shows the Fano line shape of F⊥ for �r = 5 nm (maximum enhancement). The inset shows a Fano line shape for �r = 25 nm with positive
asymmetry parameter q⊥ = 2.2.

The sign difference between q⊥ and q|| and the transition
between Lorentzian and Fano line shapes appear in association
with a singular point in the near-field energy flow induced
by the Fano effect [10,13]. This connection between Fano
resonances and singular points in the energy flow is pointed
out in Ref. [13]. The plasmonic Fano resonance in a weakly
absorbing subwavelength sphere is expected to be associated
with optical vortices and saddle points [50] in the Poynting
vector field around the particle in the vicinity of the resonance.
Indeed, as we show in Fig. 6 for λ = 770 nm, there is a saddle
point in the energy flow around the Ag nanoshell. Since the
incoming wave polarization is fixed along the x axis, the
fluorescence enhancement plotted in Figs. 5(a) and 5(b) is
probing the energy flow in the x and z axes, respectively.
In particular, the tangentially oriented dipole seems to be
sensitive to saddle points in the energy flow, changing the
response from a Lorentzian line shape (|q||| → ∞) to a Fano
profile (|q||| < ∞) when passing through it. A changing in
the profile of the quantum efficiency Q|| can also be observed

around �r ≈ 30 nm in Fig. 3(b), which is approximately the
position in the z axis where the saddle point is for the transition
frequency.

To explain the difference between the two basic dipole
orientations, we observe that one can rewrite the electric Mie
coefficient a1(ω) in the vicinity of a Fano resonance as [16]

a1(ω) = ε(ω) + q

ε(ω) + q − ı[ε(ω)q − 1]
, (8)

where ε(ω) = ε′(ω) + ıε′′(ω) and

q = χ ′
1(kb)

ψ ′
1(kb)

, (9)

where ψ1(kb) = kbj1(kb) and χ1(kb) = −kby1(kb) are the
Riccati-Bessel and Riccati-Neumann functions, respectively,
with j1 and y1 being the spherical Bessel and Neumann
functions of first order. If the sphere is lossless, one has
ε′′(ω) = 0 and |a1|2 = (ε + q)2/[(1 + q2)(ε2 + 1)], i.e., |a1|2
is a normalized Fano line shape and q is the Fano asymmetry
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FIG. 6. Energy flow vector field (normalized Poynting vector)
in the vicinity of a plasmonic Ag nanoshell interacting with an
electromagnetic plane wave (λ = 770 nm). The dielectric core has
refractive index n1 = 3.5 and radius a = 50 nm, whereas the Ag
shell has radius b = 70 nm. (a) The xz plane shows the presence of
a saddle point in the energy flow in the z axis around z ≈ 110 nm
(�r = 40 nm). (b) The yz plane shows the singular point along the
y direction, z ≈ 110 nm.

parameter of the scattering cross-section curve. The function
ε(ω) (not to be confused with the permittivity ε) can be
obtained from Eq. (A3) and is discussed in detail for homoge-
neous spheres in Ref. [16]. In the vicinity of a Fano resonance,
one can approximate this function by ε(ω) ≈ (ω − ωres)/�,
where � is associated with the curve linewidth.

Substituting Eq. (8) into Eqs. (C1) and (C2) for � = 1,
which is the dominant scattering channel for kb < 1, we obtain

after some algebra the Fano asymmetry parameters of the
fluorescence enhancement curves:

q⊥ = 1

1 + ε′′(ω)

[
qy1(kr0) − j1(kr0)

qj1(kr0) + y1(kr0)

]
, (10)

q|| = − 1

1 + ε′′(ω)

[
qχ ′

1(kr0) + ψ ′
1(kr0)

qψ ′
1(kr0) − χ ′

1(kr0)

]
. (11)

The function ε′′(ω) has a very complicated analytical ex-
pression and can be estimated from the maximum scattering
cross section or the Fano resonance [ε′(ωres) = 0]: σ (max)

sca =
6π (q2 + ε′′2)/[(k2(1 + q2)(1 + ε′′2)]. Explicitly, we have the
approximation

ε′′(ωres) ≈ −1 + q

k

√
6π

(1 + q2)σ (max)
sca

. (12)

Equations (10) and (11) are the main result of this paper and
describe the dependence of the Fano asymmetry parameters of
the fluorescence enhancement on the distance between optical
emitter and nanoshell. Since the analytical forms of G⊥(||)(ω)
and �rad

⊥(||)(ω0)/�0 are the same, Eqs. (10) and (11) can also
be applied to describe the Fano effect on the Purcell factor
of an optical emitter in the vicinity of a plasmonic nanoshell,
where ω0 is a variable [34]. Observe that these expressions
are calculated in the frequency domain ω, so that the Fano
asymmetry parameters as a function of λ have opposite sign:
qλ

⊥(||) = −qω
⊥(||). Also, in the vicinity of a Fano resonance, we

can write ε(λ) ≈ (λ − λres)/�, where � is the linewidth. In
particular, from Eqs. (9) and (11), we obtain that r0 = b (�r =
0) implies |q||| → ∞, i.e., a Lorentzian line-shape response.
This Lorentzian resonance continuously develops to a Fano
resonance as a function of �r . This result is illustrated in
Fig. 7, where the plots of the Fano asymmetry parameters
show that |q||| < 10 for �r > 10 nm. The maximum degree
of asymmetry, with qλ

⊥ = 1 and qλ
|| = −1, is achieved for �r >

50 nm.
The strong symmetric Lorentzian peak at the vicinity of the

nanoshell, for the tangential dipole configuration (q|| → ±∞),
means that only the narrow, localized plasmon mode is
contributing to the fluorescence enhancement. This occurs
irrespective of the Fano resonance in the total scattering
cross section. Indeed, with q being the Fano asymmetry
parameter of the cross sections, one can easily show that
|q| → ∞ in σsca(λ) implies |q||| → ∞ in F||(λ), which is an
expected result. Conversely, for the dipole oriented normal
to the spherical surface, one can obtain |q⊥| < ∞ even
for |q| → ∞, which is usually the case for homogeneous
nanoparticles with moderate permittivity. This leads to a Fano
line shape in F⊥ as a function of the excitation wavelength
even for homogeneous metallic spheres, with Fano asymmetry
parameter q⊥ ≈ [y1(kr0)/j1(kr0)]/(1 + ε′′) (see, e.g., Figs. 9
and 10 of Ref. [39]). In this case, the Fano resonance in F⊥(λ)
is due to the interference between the angle-averaged scattered
[a�(ω)h(1)

� (kr0)] and incident [j�(kr0)] partial waves, where the
latter is the nonresonant background. If the spherical particle
is a perfectly conducting (PC) homogeneous sphere of refrac-
tive index n � 1, i.e., a�(ω)n�1 → aPC

� (ω) ≡ ψ ′
�(kb)/ξ ′

�(kb)
and b�(ω)n�1 → bPC

� (ω) ≡ j�(kb)/h
(1)
� (kb) [16,31], one can
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FIG. 7. The Fano asymmetry parameter of the fluorescence
enhancement as a function of the distance between dipole and sphere.
The system and parameters are the same as in Fig. 5. The two curves
provide the values of qλ

⊥ = −qω
⊥ [Eq. (10)] and qλ

|| = −qω
|| [Eq. (11)]

that fit the plots in Figs. 5(a) and 5(b), respectively. The parameters
used in Eq. (12) are σ (max)

sca ≈ 5.4πb2, λres ≈ 770 nm, and q = 7.53,
leading to ε ′′ ≈ 0.83. To fit the Fano curves in Fig. 5, we consider
ε(λ) ≈ (λ − 770)/10 (λ in nanometers) and the calculated asymmetry
parameters. The inset shows q⊥(||) in the range 10 < �r < 50 nm.

achieve a Fano line shape in F⊥(λ) and F||(λ) ≈ 0 in the near
field [see Eqs. (C1) and (C2)].

Here, the Lorentzian line shape in F||(λ) in the near field
that changes into a Fano line shape in the far field is a
consequence of the (dielectric) core-shell (metal) geometry.
Physically, the atomic dipole moment d||

0 induces an oppositely
directed dipole moment on the plasmonic nanoshell surface,
with almost the same amplitude. This interaction cancels out
the broad dipole mode at the interface of the surrounding
medium and the plasmonic shell, but does not cancel out the
narrow dipole mode at the interface of the plasmonic shell
and the dielectric core. Explicitly, we can rewrite the electric
Lorenz-Mie coefficient a�(ω) as

a�(ω) = aPC
� (ω) − [ψ ′

�(n2kb)g�(ω) − χ ′
�(n2kb)w�(ω)]

n2ξ
′
�(kb)

,

(13)

where g�(ω) and w�(ω) are the Lorenz-Mie coefficients of the
electromagnetic fields within the plasmonic shell as defined in
Refs. [9,31]. The first term, aPC

� (ω) = ψ ′
�(kb)/ξ ′

�(kb), is related
to the broad electric dipole mode (� = 1), while the second
term accounts for the narrow electric dipole mode related to
the plasmonic shell-core interface. It is easily confirmed from
Eqs. (C1) and (C2) that the term aPC

1 (ω) in Eq. (13) is canceled
out for r0 = b only in the intensity enhancement factorG||(kr0),
leading to a Lorentzian line-shape response. Also, the dipole
moment of tangential orientation changes the phase of the
narrow dipole mode in π . As the distance between the dipole
and the nanoshell becomes greater, the influence of the broad
dipole mode in the fluorescence enhancement increases. This
influence is maximal beyond the near-field saddle point in the

energy flow, as indicated in Figs. 5 and 7, and by the Poynting
vector field in Fig. 6. From the experimental point of view,
this result can be applied to control both the enhancement and
quenching of the fluorescence response of quantum emitters
in the vicinity of plasmonic nanoshells.

IV. CONCLUSION

Based on the Lorenz-Mie theory, we have investigated
the fluorescence enhancement of an optical emitter in the
vicinity of a plasmonic silver nanoshell in the weak-coupling
regime. We have demonstrated that a Fano resonance in
the total scattering cross section leads to a Fano line-shape
response in the fluorescence enhancement as a function of the
distance between dipole and sphere. For an optical emitter
with dipole moment oriented tangentially to the spherical
surface, we have obtained a symmetric Lorentzian line-shape
response in the near field for the fluorescence enhancement. In
the far field, this Lorentzian line-shape response changes into
a Fano resonance, with Fano asymmetry parameter of opposite
sign compared to the dipole moment oriented normally to
the spherical surface. This effect has been explained by the
different role played by the induced electric dipole moment in
the plasmonic nanoshell for both atomic dipole orientations.
We have shown that this change in the fluorescence
enhancement can be calculated analytically and is also
associated with an optical singular point in the energy flow
in the vicinity of the plasmonic nanoshell. These analytical
results shed a light on a fundamental problem of Fano-like
resonances in nanoplasmonics, and they may have interesting
applications for fluorescence enhancement and/or quenching
of optical dipole emitters near plasmonic nanoshells.
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APPENDIX A: LORENZ-MIE THEORY

The incident and scattered electric fields provided by the
Lorenz-Mie theory (plane waves) are [31]

Ein(r) = − 1

kr

∞∑
�=1

E�{ı cos ϕ sin θj�(kr)�(� + 1)π�r̂

− cos ϕ[π�ψ�(kr) − ıτ�ψ
′
�(kr)]θ̂

− sin ϕ[ıπ�ψ
′
�(kr) − τ�ψ�(kr)]ϕ̂}, (A1)

Esca(r) = 1

kr

∞∑
�=1

E�

{
ı cos ϕ sin θa�h

(1)
� (kr)�(� + 1)π�r̂

− cos ϕ[b�π�ξ�(kr) − ıa�τ�ξ
′
�(kr)]θ̂

− sin ϕ[ıa�π�ξ
′
�(kr) − b�τ�ξ�(kr)]ϕ̂

}
, (A2)
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where E� = ı�E0(2� + 1)/[�(� + 1)], π� = P 1
� (cos θ )/ sin θ ,

τ� = dP 1
� (cos θ )/dθ , with P 1

� being the associated Legendre
function of first order.

The coefficients a� and b� are the transverse electric
(TE) and transverse magnetic (TM) Lorenz-Mie coefficients,
respectively, and are determined from boundary conditions.
For center-symmetric coated spheres interacting with plane
waves, as depicted in Fig. 1, these coefficients read [31,51]

a� = ñ2ψ
′
�(kb) − ψ�(kb)A�(n2kb)

ñ2ξ
′
�(kb) − ξ�(kb)A�(n2kb)

, (A3)

b� = ψ ′
�(kb) − ñ2ψ�(kb)B�(n2kb)

ξ ′
�(kb) − ñ2ξ�(kb)B�(n2kb)

, (A4)

with the auxiliary functions

A�(n2kb) = ψ ′
�(n2kb) − A�χ

′
�(n2kb)

ψ�(n2kb) − A�χ�(n2kb)
,

B�(n2kb) = ψ ′
�(n2kb) − B�χ

′
�(n2kb)

ψ�(n2kb) − B�χ�(n2kb)
,

A� = ñ2ψ�(n2ka)ψ ′
�(n1ka) − ñ1ψ

′
�(n2ka)ψ�(n1ka)

ñ2χ�(n2ka)ψ ′
�(n1ka) − ñ1χ

′
�(n2ka)ψ�(n1ka)

,

B� = ñ2ψ
′
�(n2ka)ψ�(n1ka) − ñ1ψ�(n2ka)ψ ′

�(n1ka)

ñ2χ
′
�(n2ka)ψ�(n1ka) − ñ1χ�(n2ka)ψ ′

�(n1ka)
,

where the functions ψ�(z) = zj�(z), χ�(z) = −zy�(z), and
ξ�(z) = ψ�(z) − ıχ�(z) are the Riccati-Bessel, Riccati-
Neumann, and Riccati-Hankel functions, respectively, with
j� and y� being the spherical Bessel and Neumann functions
[31]. The relative refractive and impedance indices (in relation
to the surrounding medium) are np = √

εpμp/(ε0μ0) and
ñp = √

εpμ0/(ε0μp), with p = {1,2} [51]. For nonmagnetic
materials (μp = μ0), one has ñp = np [52]. It is worth
mentioning that these Lorenz-Mie coefficients for a single-
layered center-symmetric sphere can be easily generalized to
the multilayered case [53].

APPENDIX B: DECAY RATES AND
LORENZ-MIE THEORY

Here we present an analytical method to calculate �/�0

based on the Lorenz-Mie theory. Instead of directly using
the electric dipole fields Ed0

dip(k0r) (emitted) and Ed0
sca(k0r)

(reflected) [18] and calculating the ratio of emitted power,
P/P0, we consider only the standard Lorenz-Mie solution for
incident plane waves [31] to calculate the projected electric
LDOS and, hence, �/�0.

Using the expansions of the electric fields provided in
Appendix A, we define the projected radiative LDOS [33,39],
ρrad

d0
(r0,ω0)/ρ0, as the total electric-field intensity in the near

field due to the presence of the sphere normalized by the field
intensity in the absence of the sphere, both of them projected
along d0:

�rad
d0

(r0,ω0)

�0
= 〈|d0 · [Ein(r0,ω0) + Esca(r0,ω0)]|2〉

〈|d0 · Ein(r0,ω0)|2〉 , (B1)

where 〈· · · 〉 = (1/4π )
∫ 1
−1 d(cos θ )

∫ 2π

0 dϕ(· · · ) is the angle
average over 4π . Observe that Eq. (B1) is equal to Eq. (3) for

ω = ω0. Here we are applying the computational procedure
discussed in Refs. [35,39], in which the variation on the
projected LDOS is equal to the variation on electromagnetic
emitted power by a classical oscillator (normalized by the
power emitted in vacuum) placed at r0 and for a specific
orientation d0 with respect to the spherical surface. Additional
feedback terms between the dipole and the sphere (recurrent
scattering) are expected to have negligible contribution to
the electromagnetic fields [17]. It is worth emphasizing that
Eq. (B1) provides the same result as Refs. [18,28]. In particular,
the angle average in Eq. (B1) is a consequence of the definition
of total radiated power. Indeed, it is calculated by integrating
the radial component of the Poynting vector associated with
the electric dipole moment over a spherical surface with radius
r at the far field (r → ∞) [18].

Let us now consider two basic orientations for the electric
dipole moment in spherical geometry:

d⊥
0 = d0r̂ , d||

0 = d0√
2

(θ̂ + ϕ̂),

where d||
0 was chosen for convenience (indeed, it provides

analytical solutions for the angular integrals). Now, by sub-
stituting Ein(k0r0) and Esca(k0r0) [Eqs. (A1) and (A2), respec-
tively] into Eq. (B1), we readily obtain the radiative decay
rates,

�rad
⊥ (k0r0)

�0
= 3

2

∞∑
�=1

�(� + 1)(2� + 1)

×
∣∣∣∣∣j�(k0r0) − a�(ω0)h(1)

� (k0r0)

k0r0

∣∣∣∣∣
2

, (B2)

�rad
|| (k0r0)

�0
= 3

4

∞∑
�=1

(2� + 1)

[∣∣∣∣ψ ′
�(k0r0) − a�(ω0)ξ ′

�(k0r0)

k0r0

∣∣∣∣2

+ ∣∣j�(k0r0) − b�(ω0)h(1)
� (k0r0)

∣∣2
]
, (B3)

where �rad
⊥ and �rad

|| refer to a dipole oscillating or-

thogonally (d⊥
0 ) or tangentially (d||

0) to the spherical sur-
face, respectively. To obtain Eqs. (B2) and (B3), we
have used the relations [31]

∫ 1
−1 d(cos θ )(π�τ�′ + τ�π�′) =

0, (2� + 1)
∫ 1
−1 d(cos θ )(π�π�′ + τ�τ�′) = 2�2(� + 1)2δ��′ , and

(2� + 1)
∫ 1
−1 d(cos θ )π�π�′ sin2 θ = 2�(� + 1)δ��′ , with δ��′ be-

ing the Kronecker delta. The coefficients a� and b� are provided
in Eqs. (A3) and (A4), respectively, in Appendix A.

The total decay rate, � = �rad + �nrad, can be calculated
from the definition in Eq. (1), by using the Green’s ten-
sor associated with the electric dipole response. However,
following Refs. [18,38], we can readily derive the total
decay rate from the equations above by noting that |a�|2 =
Re(a�) and |b�|2 = Re(b�) when the sphere is lossless, a
consequence of the optical theorem [31] [see Eqs.(5)–(7)].
By this simple observation, we can heuristically calculate
the total decay rate from the radiative decay rate. Expanding
the squared terms in Eqs. (B2) and (B3) and replacing |a�|2
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with Re(a�) and |b�|2 with Re(b�), we obtain the total decay
rates,

�⊥(k0r0)

�0
= 1 − 3

2

∞∑
�=1

�(� + 1)(2� + 1)

× Re

⎧⎨⎩a�(ω0)

[
h

(1)
� (k0r0)

k0r0

]2
⎫⎬⎭, (B4)

�||(k0r0)

�0
= 1 − 3

4

∞∑
�=1

(2� + 1)Re

{
a�(ω0)

[
ξ ′
�(k0r0)

k0r0

]2

+b�(ω0)h(1)
� (k0r0)2

}
, (B5)

where we have used the relation
∑∞

�=1 �(� + 1)(2� + 1)
j 2
� (z) = 2z2/3 = ∑∞

�=1(2� + 1)[ψ2
� (z) + ψ ′2

� (z)]. Once again,
assuming the dipole has no defined orientation in space,
one has from Eqs. (B4) and (B5) the mean spatial ratio
� = (�⊥ + 2�||)/3.

In addition, by subtracting Eqs. (B2) and (B3) from
Eqs. (B4) and (B5), respectively, we obtain the nonradiative
decay rates,

�nrad
⊥ (k0r0)

�0
= 3

2

∞∑
�=1

�(� + 1)(2� + 1)

∣∣∣∣∣h(1)
� (k0r0)

k0r0

∣∣∣∣∣
2

× Re[a�(ω0) − |a�(ω0)|2], (B6)

�nrad
|| (k0r0)

�0
= 3

4

∞∑
�=1

(2� + 1)

×Re

{∣∣∣∣ξ ′
�(k0r0)

k0r0

∣∣∣∣2

[a�(ω0) − |a�(ω0)|2]

+∣∣h(1)
� (k0r0)

∣∣2
[b�(ω0) − |b�(ω0)|2]

}
. (B7)

Although we have been discussing electric dipole radiation
in the vicinity of a sphere, analogous expressions can be
readily obtained for a magnetic dipole by interchanging a� with
b� [18].

APPENDIX C: INTENSITY ENHANCEMENT FACTOR

We consider the incoming electromagnetic wave polarized
along the x axis, i.e., Ein(ω) is parallel to x̂ = sin θ cos ϕr̂ +
cos θ cos ϕθ̂ − sin ϕϕ̂. The atomic dipole moment d0 is di-
rected along the direction of the local electric field, making an
angle ς with r̂ [37]. Hence, the radial and tangential dipole
moments are d⊥

0 = d0r̂ and d||
0 = d0(θ̂ + ϕ̂)/

√
2, respectively.

Following the definition in Eq. (3) and using the results of
Sec. B, for the two possible orientations of the electric dipole
in relation to the spherical surface, we have

G⊥(kr0) = 3

2

∞∑
�=1

�(�+1)(2�+1)

∣∣∣∣∣j�(kr0)−a�(ω)h(1)
� (kr0)

kr0

∣∣∣∣∣
2

,

(C1)

G||(kr0) = 3

4

∞∑
�=1

(2� + 1)

[∣∣∣∣ψ ′
�(kr0) − a�(ω)ξ ′

�(kr0)

kr0

∣∣∣∣2

+ ∣∣j�(kr0) − b�(ω)h(1)
� (kr0)

∣∣2
]
. (C2)

The intensity enhancement factor for a dipole with an
arbitrary orientation is G = (G⊥ + 2G||)/3, which agrees with
the result of Ref. [39]. The precise intensity enhancement
factor for an atomic dipole located in an arbitrary position
r0 is G(r0) = cos2 ς G⊥(r0) + sin2 ς G||(r0), where cos2 ς =
|Er (r0)|2/|E(r0)|2 and sin2 ς = 1 − |Er (r0)|2/|E(r0)|2, with
|E|2 = |Er |2 + |Eθ |2 + |Eϕ|2 being the local electric-field
intensity [37]. If one assumes that d0 is parallel to x̂, one
has G(r0) = G⊥(kx) for the radial atomic dipole and G(r0) =
G||(kz) for the tangential atomic dipole.
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